On Line Analysis: RHIC & LHC

Pablo Yepes, Rice University Bar Harbour June, 2001

Outline

- Introduction
- CMS Architecture, HLT
- Ideas/Considerations for an upgraded L3
- Conclusions

Introduction

- RHIC is at the forefront of Heavy Ion Physics.
- At around the time of RHIC II, LHC plans to start operations with 1 month/year of AA run.
- Even though the priority of the US is and will be to fully exploit RHIC, there is a strong interest in the US HI community to participate in HI LHC
- Resources are limited. How can that US participation in HI LHC be optimized?

LHC & RHIC

- High Level (L3) Trigger Farms are common in HEP/NP experiments
- LHC will be pushing the technology to the limit
- Proposal (plan) for US NP to contribute in CMS High Level Trigger
- Can CMS (STAR) benefit from STAR (CMS) experience?

CMS Trigger/DAQ Architecture

Level-1 Trigger

- Fast algorithms: 3 µs with coarse local data
- Only Calorimetry and Muon Detectors
- Special purpose hardware (ASICS)
 - Centrality with ECAL, HCAL (including HF)
 - ZDC for minbias.
 - Trigger on e, μ , jets, Missing E_T. Rates steep function of p_T thresholds
 - AA higher backgrounds

High Level Trigger (HLT)

- L1 in AA has larger backgrounds than in pp due to underlying event.
- Efficiency trigger requires more careful analysis. <u>HLT can do a better job than L1</u>.
- HLT to play a greater role in AA

- All event data available:
 - Fine data for Calorimetry and Muon Detectors
 - Tracker
- Refine triggered object
- Allows to go lower in p_T
- Processing time O(s)
- Filtering Farms of commodity processors (Linux)

Data Flow and Rates

HLT better trigger job

Quarkonia Muon Trigger

Rates from π K Background

HLT Needed even for 2 out of 2 trigger

HLT Subfarm

CMS HLT Features

- Object Oriented: electron, muon, jets, ET
- At least for pp program, code running on HLT is offline code
- Several trigger sublevels are possible:
 - HLT 1. Request only calo info from event builder, if event passes, go to next level
 - HLT.2 Request tracker info
- Modular reconstruction. Only regions of interested are treated.
 - For example: electron starts with EM seed and only tracks in a road determined by seed and xy vertex

STAR Assumptions

- TPC or tracking detector can be read at a much high rate, p.e. 4 KHz
- Rate of events read by TPC is too high for offline storage
- Assume current approach: Full tracking with current algorithm.
 - Speed up: Selective tracking
 - Slow down: Offline code

STAR/CMS

	STAR	CMS
Luminosity	5.00E+28	1.00E+27
sqrt(s)	200	5500
Max dN/dy	600	3000
L0 Input (KHz)	400	10
L3/HLT Input (Hz)	4000	8000
L3/HLT Output (Hz)	100	33
Event size (MB)	5(?)	3
CPU/Event (MIPs)	390	3700
MIPs/Box in 2008	13800	13800
# Boxes Needed in 2008	113	2145

- Assuming current algorithm and approach the number of CPUs rather modest
- More sophisticated (offline) algorithms should be possible

Possible L3 Modes

- Select events: Current mode
- Select sub-event samples:
 - Detector (TPC) sectors (jets)
 - Area where interesting particle candidate is located: electron, light nuclei in TPC, high p_T V0s or tracks
 - Overlap cleaning (pp)
- Compact data (Presented in the first L3 proposal): Only a gain in data volume of ~2?

Upgraded STAR L3 Wish List

- Treat whole event on one processor (current approach event split in 12 pieces). Avoid problems matching different sectors. Increase efficiency.
- Longer buffers where events can be stored for a few seconds.
- Unique path for data in DAQ looks like a very nice feature: the whole event sent to L3, onto tape from there if it is accepted.

L3 Alternative Approaches

• Modular:

- Start with a seed from a fast detector: for example, an EM Cluster
- Pros: faster
- Cons: it does not work for "soft" physics. For example: trigger on high p_T V0's

• Offline code

- It may not be an option for STAR
- Makes life simpler

Conclusions

- If tracking device is upgraded to a few KHz reading rates, L3(000) would need to be upgraded.
- Changes in online reconstruction philosophy and L3 triggering need to be considered.
- CPU power in 5 years is expected to increase by ~30 wrt to L3 purchases time.
 Considerable more sophisticated L3 possible